New Year Offer - Flat 50% Off On All Courses


Data Science (26 blogs)

Become a Certified Professional  

Blog Categories

Category List
  • Introduction to Data Science
  • Data Science Algorithms
  • Use cases of Data Science
  • Internships
  • Data Science - Career opportunities
  • Data Science Use Cases


Last updated on Nov. 16, 2020, 3:04 p.m. 525 Views



He is a tech-expert with 7 years of industrial experience in Python, Data Analysis, Big Data, Machine Learning and NLP. He has 360 degrees of expertise in all these subjects. He is known for his practical approach to different real-time industrial problems. He is known for his great interest in helping students reach their true potential and scale greater heights. Believing in Problem-based teaching pedagogies, he left his job in Malaysia as a data engineer and came back to the newly born state to fill the void between students and the industry.


Last updated on Nov. 16, 2020, 3:04 p.m. 525 Views


Data Scientist is the most demanding skill of the 21st century.  If you are also among those learning aspirants who are thinking to precede your career in Data Science then the question of choosing which language between R and Python must be popping up in your mind. And it is actually debated to choose what is better! This post is written with two objectives:-

Objective 1: For the experienced Data Scientists who want to get familiar with a library that takes care to deal with the issue to handle in your chosen language.

Objective 2: For the beginner Data Scientists who want to get familiar with the entire practical level knowledge of these two programming languages so you can choose between one.

Before going forward in the comparison, let us discuss what these programming languages are and what do these offers!

The Scenario of R Programming

R is a functional programming language with approx. 43% of Data Scientists using it in their tool stack as compared to the 40% of the people using Python. The R programming language is dedicated to solving statistical problems. R is known as specialized in solving problems related to Data Science.

Prerequisites to learn R programming language:

  • Fundamental knowledge of Statistics
  • Solid understanding of Mathematics
  • Understanding of Graphs for data representation
  • Prior knowledge of OOP’s or any programming language

The Scenario of Python Programming

Python is a non-functional programming language or an OOP based versatile language that can perform everything from data mining to plotting graphs. The design philosophy of Python is based upon its simplicity and readability. The algorithms written in Python are designed in an easily readable and writable manner. Indentations are used to separate the blocks of Python code. Inside each code block, you will find syntax. As per the survey done by O’Reilly, 40% of the Data Scientists use Python to solve their real-world problems which were exceeded by 36% of the respondents who use Excel.

Prerequisites to learn Python programming language:

  • Fundamentals of operating system
  • No prior experience in programming required

Programming in Data Science

The primary goal of Data Science is to solve a problem. Data Science programming needs the efficiency to perform everything it requires to analyze the data. Here, everything means implementing a multidisciplinary set of knowledge from every perspective of life to analyze the nature of data. The code snippet in Data Science is used to solve an algorithmic problem or equation in the form of a dataset.

Comparison Factors R Python
Easy to Learn No Yes
Speed No Yes
Data Handling Capabilities Yes Yes
Visualizations Yes No
Versatility Yes Yes
Commonness No Yes
Job Scenario No Yes
Community Support Yes Yes


Easy to learn

R has unstable desires to learn and adjust and people with less or no experience in programming believe that it's problematic in any case. At the point when you get the grasp of the language, it isn't that hard to fathom. 

Python, then again, underscores proficiency and code lucidity which makes it one of the least mind-boggling programming lingos. It is perfect on account of its effortlessness of learning and understandability. 


R is a low-level programming language since it requires longer codes for clear procedures. This is one reason behind the diminished speed. 

Python, then again, is a high-level programming language and it has been the choice for building fundamental yet speedy applications. 

Data Handling Capabilities 

R is beneficial for investigation due to the huge number of codes, instantly usable tests and the upside of using code recipes. Regardless, it can moreover be used for primary data analysis without the foundation of any coding package. 

The Python bundles for data analysis were an issue anyway this has improved with the continuous variations. Numpy and Pandas are used for data analysis in Python. It is moreover sensible for equal estimation. 


Visualizations are seen beneficially and more enough than rough qualities. R includes different packs that give advanced graphical capacities. 

Visualizations are huge while picking data analysis based programming and Python causes them to astonish observation libraries. It has logically various libraries yet they are erratic and give a spotless yield. 


It is anything but difficult to use complex conditions in R and moreover, the measurable tests and models are immediately open and viably used. 

Python, then again, is a versatile language concerning building something without any planning. It is similarly used for scripting a site or various applications. 


Directly, if we look at the distinction of both the programming languages, they started from a comparable level 10 years prior yet Python saw a huge improvement in reputation and was situated first in quite a while rundown of programming languages when stood out from R that situated 6th in the overview. 

Python customers are continuously dedicated to their language when appeared differently concerning the customers of the last as the degree of changing from R to Python is twice as huge as Python to R.

Code writing

For example, you need a number of rows in both R and Python languages, the code in both the languages will look like-

R Python
dim(NBA) NBA.shape
[1] 481 31 (481, 31)

The example will print the number of players and the number of columns in each. We have 481 rows, or players, and 31 columns containing data on the players.

Functional Differences between R and Python

Functional Differences R Python
Collect raw data CSV’s, Excel, text files into R, Data collection packages like Magritte or Rvest CSV’s, SQL tables, Datasets, Wikipedia tables, etc.
Process data Using R libraries such as reshape2 Using Pandas
Explore data Rely on 3rd party for heavy work Data points using Time-series analysis
Performing in-depth analysis Poisson distribution and combination of probability laws Numeric analysis with NumPy, Scientific calculations and computing with SciPy, Machine Learning algorithms with scikit-learn, etc.
Data Visualization Using ggplot2 Generate basic graphs and charts using Matpolib or, Python notebook into HTML conversions using nbconvert function, etc.
Salary $71,931 to $123,911 per annum $78,176 to $111,896 per annum

Why R?

R is used profoundly by Data Scientists and is loaded with a number of packages that are available for Data Science projects. R is good at quickly testing ideas, trying different ways to visualize data and for increased prototyping work.

Why Python?

Various libraries in Python like Pandas, NumPy, scipy, and scikit-learn are handy to perform Data Science projects. If you want to showcase your Data Science work, Python will be the winner! Django is an awesome web application framework that can help you create websites or web services with both Data Science and Web programming.

What to choose R or Python?

At the end of the discussion, the goal of a programming language is to allow the simplest and more efficient code that can be utilized for the job. You can use either of the two programming languages or the conjunction of it. The focus of a Data Scientist should be on the skills but not on the tools. The competing character of R and Python might help the learners to produce the simplest and the most qualitative code. Because of the hybrid nature of Data Science, there will always be a wrestling match between two, as both of them are robust. Discuss in the comment section what do you think will win this battle of the best programming language of Data Science- R or Python?


#FirstLastHandle1MarkOtto@mdo2JacobThornton@fat3Larrythe Bird@twitter


Trending Certifications at Codegnan

Python for Data Science Certification



MTA Certification - Python for Data Science

555 Learners

200 Hours

Next Batch:
4th Jan | Weekday (Online) | 07:00PM - 09:00PM

Key Skills:
Mathematical Thinking, Critical Thinking

Machine Learning with Python Certification



Codegnan Certification for Machine Learning

431 Learners

50 Hours

Next Batch:
Nov 23rd | Weekday (Online) | 10:00AM - 12:00PM

Key Skills:
Mathematical thinking, Python Programming Skills

Web Development with Python - Django Certification



Codegnan Certification for Django

380 Learners

40 Hours

Next Batch:
Dec 1st | Weekday (Online) | 6:00PM - 7:00PM

Key Skills:
Python Programming Skills

ReactJS Certification



Codegnan Certification for ReactJs

98 Learners

60 Hours

Next Batch:
Nov 30th | Weekday (Online) | 2:00PM - 4:00PM

Key Skills:
HTML, CSS, Java Script

Browse Categories

Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1 Browse Btn1
Become a Certified Professional  


Video Reviews